
A wireless data logger with GSM connectivity and

Bluetooth interface between sensors

Keerthiraj Nagaraj,

Electrical and Computer Engineering

University of Florida,

 Gainesville, FL 32611, USA

k.nagaraj@ufl.edu

Siddharth Gupta,
Computer Science

University of Florida,

 Gainesville, FL 32611, USA

siddg@ufl.edu

Thiago Borba Onofre,
Agricultural and Biological

Engineering

University of Florida,

 Gainesville, FL 32611, USA

tonofre@ufl.edu

Abstract—It is estimated that 30% of the world food production

is lost to pests and diseases. Securing the food supply is a major

challenge for farmers. Plant diseases are affected by weather

conditions and each disease has its own specific weather

requirements. Our wireless data logger system is an attempt to aid

farmers in anticipating disease onset in their crops so they can take

appropriate measures in time. Disease Alert Systems (DAS) are used

to notify farmers when they must spray their crops based on weather

conditions. DAS are strongly dependent on weather station data, so

it is very important to have a low cost and reliable data logger where

farmers would be able to easily add/replace sensors. Commercial

data loggers use wired sensors, but this is a limitation due the cable

length and connector type. Data loggers have been evolving with the

advance in wireless technology such as the GSM and Bluetooth

network. In this work, we propose the development of a GSM based

datalogger where sensor data flows over a Bluetooth network. The

new data logger will replace sensor cables of a conventional

datalogger. A concept prototype was developed using low cost and

open source resources. Two dataloggers were built: a master and a

mini. The mini only has the sensors and a Bluetooth radio. The

master data logger is a sink node, as it as two radios: Bluetooth and

GSM.

Keywords—GSM Network, Data Logger, Weather Station,

Bluetooth Network, Cloud Web Server, InitialState, Arduino, IoT

I. INTRODUCTION

A weather station is a data logger with a collection of
sensors to monitor the surrounding environment. Weather
stations are extremely important to agriculture, as they are
used by researchers to understand how the weather affects
daily farm operations. Also, weather station data have been
used to predict the occurrence of diseases, as for example, a
disease alert system for strawberries was implemented using
weather station data.

Weather stations can be classified accordingly with how
the user can access the recorded data: locally or wirelessly.
Standalone weather stations have an external memory, were
real time data is stored with time stamp. Periodically, the user
must go the field to manually collect data. Wireless weather
stations, report data constantly to a remote server, usually in a
15 minutes’ interval, where this data can be accessed using
internet. Cell phone is the most popular option to add wireless
connectivity to a weather station. Almost all commercial

weather stations available nowadays have cell phone
connectivity.

A current limitation of current weather stations is the
number and the type of sensors. Usually, each manufacturer as
its own connector type Reference. Another limitation is the
number of inputs, where the user can not add more than a
certain number of sensors on the data logger. A third
limitation are cables, as they are limited by length.

In this project, two data loggers were designed, as shown

in Figure 1. The main data logger contains the cell phone radio

with the Bluetooth master. The second data logger contain a

Bluetooth radio and the sensors, which will be called mini data

logger. The mini data logger, periodically reads and transmits

data to the main data logger, which will upload data to the

cloud. The main objective of the mini data logger is to replace

cables connection adding flexibility to the final user.

Fig. 1. System Architecture

The content of this paper is organized as follows. In the

next Section, we explore the similar existing systems. The

following section explains the design of the wireless data

logger. The hardware development of cellphone data logger

with Bluetooth sensor interface Section IV. Software

development, such as cloud and an android application will be

carried out in Section V. Section VI presents the future work

and the conclusion of this paper.

II. RELATED WORK

A low-cost weather station with Bluetooth connectivity
was developed at the Pedagogical and Technological
University of Colombia Tunja. The monitored variables were:
temperature, relative humidity, soil moisture and wind

direction, and the sensors were calibrated with measuring
instruments available locally. Via Bluetooth wireless module,
the monitored data was sent to a local computer, [2].

A GSM wireless datalogger was presented for monitoring
power and water flow rate at a small hydro power generation
station in Malaysia. As the Intake of small hydro station is
located inaccessible area from the powerhouse, a system
composed by a GSM datalogger and a RF wireless network
will be installed at the power plant. The gateway will have two
radios: GSM and RF. The RF link will be used to receive data
from a node installed at the intake. Once, power is measured,
the GSM will upload data an online database server where the
data will be analyzed, [3].

A wireless data-acquisition system was developed for
reading and storing information from 15 weather stations
located in zones of difficult access. These stations were
located in the north side of the Natural Park of Sierra Nevada,
in Huéneja (Granada). The authors used GSM/GPRS cell
phone radios, as they are offer considerable advantages in
transmitting the information at big distances, specifically due
favorable conditions, flexibility and the low costs associated
with those modules. A microcontroller based circuit for data
acquisition was designed, which scans 8 sensors together at
any intervals programmable. Their system was compared with
commercial data loggers: Campbell and Hobo H8. The results
showed an error of order 1%, which they believe is due to the
analog to digital converter quality, [4].

An Automatic Remote Weather Station with a PC-based
Data Logger was developed at the University of the South
Pacific. The system consists of a weather station prototype that
collects weather sensor data such as air temperature, relative
humidity, dew point, wind speed, and rainfall. The system
performs automatic or unmanned measurements of weather
data and sends it wirelessly to the sink node which is a local
PC for logging and displaying the data in a graphical user
interface. The authors of the paper [5] in the future work
describe the possibility of transfer of data over GSM/GPRS
networks and to provide weather data to users as text
messages.

Continuous development of the emerging technology on
data logger has brought the creation of innovation and
applications. By using the available resource in the market
such Bluetooth and cell phone modem, it is possible to
customize data logger with multiple sensors expanding the
capabilities of current data loggers. Also, this project
incorporates the notions that put forth in the systems explored
above, and it provides additional features like: email alerts,
cloud server, historical data, and ability to change timelines.
The advantages of our system are discussed in detail in a later
section.

III. HARDWARE DESIGN

This section discusses about the hardware components used in
our project and how they were used to complete this project.

A. Microcontroller

Arduino UNO, Figure 2, is a microcontroller which

uses ATmega328P chipset. It is one of the highly-used

microcontrollers for academic projects as it is easy to use and

supports libraries for various sensors, communication modules

and software packages. Programs are compiled and executed

on to the board using a software package called as Arduino

IDE and the board can be reused as many times as necessary

as the functionality of the board can be changed just by

changing the code and rewriting it onto the Arduino board.

Arduino UNO board has 14 digital I/O pins, 6 analog inputs, a

16MHz quartz crystal, a USB connection to write the

programs on to the board, a power jack, an ICSP header, built-

in LED, and a reset pin. For Arduino UNO, operating voltage

is 5V and the acceptable input voltage range is 7-12 V. Each

input I/O pin in the board consumes 20 mA DC current when

being used by the controller.[6]

Fig. 2. Arduino Uno microcontroller

B. Cellphone radio

The SIM900 GPRS module from Seeed Studio,

Figure 3, was used to establish a cellphone connection

between Arduino board and the IoT server, [7]. The features of

this board are:

● Quadband support: 850/900/1800/1900 MHz

● Power supply: 5V via 5V pin and 6.5-12V via Vin

● Programmable Baud rate

● Software serial pins: D7 and D8

● Communication support: Standard GSM 7.7/7.5

● SIMCOM AT commands supported

Fig. 3. GPRS SIM900 Arduino Shield

C. Bluetooth Radio

HC-05, Figure 4, is a simple Bluetooth SPP (Serial

Port Profile) module designed for simple Bluetooth

applications such as data transfer between two

microcontrollers, and other transparent wireless serial

connections. It works on Bluetooth V2.0+EDR version and

uses CSR Bluecore 04-External single chip Bluetooth system

with CMOS technology and with Adaptive Frequency

Hopping feature (AFH), [8].

Bluetooth Serial Port Profile is similar to the

functionality of RS-232 or a UART i.e. mainly serial

communication interface but it works with the wireless

medium. It sends bursts of data from one device to another

which are connected via Bluetooth medium. Features of HC-

05 module:

● Sensitivity: -80 dBm

● RF transmit power: +4 dBm

● UART interface with programmable baud rate

● Integrated antenna

● Auto connect to the last device on power as default.

● 5 pins: Vcc, Gnd, RX, TX, Key

● Operating voltage: 1.8-3.6V

Fig. 4. HC05 Bluetooth radio

D. Sensors

The Sparkfun weather shield, Figure 5, was used to

collect sensor values such as temperature, pressure, and

relative humidity. It is an easy to use Arduino shield and even

provides connections for optional sensors such as wind speed,

wind direction, rain gauge. However, the optional sensors are

not being used in the project and may be considered for future

work. The sensors put to use are HTU21D

humidity/temperature sensor, MPL3115A2 barometric

pressure sensor and ALS-PT19 light sensors.The operating

voltage level of this shield is 3.3-16 V and it has built-in

voltage regulators. Accuracies of humidity, temperature and

pressure are ±2%, ±0.3 °C and ±50 Pa, [9].

Fig. 5. Sensor board.

E. Bluetooth Network

 Generally, in a weather station there will be many sensors
such as temperature sensor, pressure sensor, wind sensor, rain
sensor, relative humidity sensor etc. All these sensors usually
have different wire/pin/port configurations based on their
manufacturers. Hence, it is often difficult to replace a sensor
or add new sensors to the existing system due to mismatch of
wire/pins/ports. This problem arises because of wired
connectivity. Using a wired connection for these sensors
makes the frequent management of weather station an arduous
task and the system is prone to physical damage due to
extreme weather conditions or other external agents.
Connecting all the sensors to microcontroller in weather
station using Bluetooth medium addresses the problems
discussed above and hence we use Bluetooth medium to
transfer data from sensor nodes to the gateway node.
Moreover, this allows the sensors to be placed anywhere as
long as they are in the range of gateway Bluetooth node.

 In this project, we have used two HC-05 Bluetooth
modules, one at the sensor node in the slave mode and the
other one at the gateway node in master mode. The master
module has been set to initiate, pair and connect operation
with slave module as soon as both are switched ON. We use a
software serial to connect these Bluetooth modules to Arduino
UNO boards. Data collected from Sparkfun weather shield is
transmitted from sensor node to gateway node over the
bluetooth channel created using HC-05 modules.

IV. SOFTWARE DESIGN

The software design is split in two parts: data logger and
cloud with android application.

A. Data logger

The data logger was programmed using the Arduino IDE
v1.6.12. It is an open-source software that makes it easy to
write code and upload it to the Arduino board. It runs on
Windows, Mac OS X, and Linux. The programming was done
using a dialect of features from the programming languages C
and C++. The following libraries were used to aid in

development - Software Serial, SparkFunMPL3115A2,
SparkFunHTU2ID. Figure 6 shows two Arduinos with
Bluetooth radios, were the Arduino on the right side has the
weather shield, and the Arduino on the left side (with the
shining led) is the master.

Fig. 6. Bluetooth network

A software serial library was used to establish a
communication link between Arduino board and Bluetooth
module. Both the master and slave modules were programmed
to work at the baud rate of 9600. AT commands were
employed for configuration details of baud rate, action mode,
and MAC address of slave module using Arduino IDE. The
master module was configured using this slave address such
that when it is switched on every time it will look for the same
slave module and connect to it automatically.

At the sensor node, libraries related to Sparkfun weather
shield were installed and used to create an instance through
which the sensor values could be read. A timer was used to set
a 20 second delay between each set of sensor readings. The
sensor values obtained were checked for specific condition in
humidity and the status of on-board LED was modified per
this condition to notify the user. Sensor reading such as
Temperature, Humidity and Pressure were transmitted from
sensor node to gateway node. One of the major challenges
faced in Bluetooth networks was that we received garbage
values at the gateway nod, due to initial mismatch in baud
rates of masters and slave modules.

Also, there were innumerous issues with existing libraries
for the GSM. In this case, the workaround was working with
AT commands programmatically to establish a TCP
connection and perform HTTP requests. Firstly, a network
Access Point Name (APN), username and password were
defined to establish the connection and obtain a working IP.
These configuration details are network carrier specific and
would vary for each carrier. We use a T-mobile SIM for our
project. It is required that a data plan be activated prior to
installing the SIM card in the GSM module. Once a TCP
connection was established, the server URL and port number
(discussed in the Cloud server section) were set. Then the
command HTTPACTION=0 (0 signifies a GET request) was
used to initiate a GET request to the server.

Summarizing, every 20 seconds, a timer scan the sensors,
and the readings are transmitted from sensor node to sink
node. The data sink node initiates HTTP GET requests at the
same rate to update the values to the cloud web server, where
the user can access via web or mobile application.

B. Cloud Web Server and Android Application

The HTTP web server was designed with NodeJS in

addition to the Express framework. Node.js is an open-source,

cross-platform JavaScript runtime environment that can be

used for developing a diverse variety of applications and tools.

The runtime environment interprets JavaScript using Google's

V8 JavaScript engine. Node.js has an event-driven architecture

capable of asynchronous I/O which optimizes throughput and

scalability. Express, is a web application framework for

Node.js. It is relatively easy to build web applications and

APIs and has become the de facto standard server framework

for Node.js. It is a minimal framework, many of the add-on

features can be availed through plugins.

The web server also employs the three core

technologies of World Wide Web content production;

JavaScript, CSS (Cascading Stylesheet Language), and HTML

(HyperText Markup Language). JavaScript was preferred

owing to its qualities of an untyped, high-level, dynamic, and

an interpreted programming language. Additionally,

JavaScript is a prototype-based language that has first-class

functions. This makes it a multi-paradigm language, that

supports imperative, object-oriented, and functional

programming styles.

Figure 7, illustrates the web server algorithm

developed. Each block will be described on the following

paragraphs.

Fig. 7. Web Server Algorithm

Initially, the web server development was done in

JetBrains WebStorm Build 2016.3.1 IDE and deployed

locally. Later, the web server was pushed to the Cloud9 cloud

service. Cloud9 IDE is an online integrated development

environment(IDE) that supports hundreds of programming

languages, including JavaScript with Node.js. Deploying the

server on a cloud service unlocked many advantages. It

circumvented the issue of having a static IP, allowed accessing

the dashboard from anywhere, and improved reliability,

consistency and manageability of the web server.

The web server provides a URL, Figure 8, at which

the GSM node can update the sensor values at a periodic

interval. For the server to handle the responses appropriately

the interval of sensor readings should be at least 1 second. The

URL is composed of the top-level domain(.io), the domain

(c9users), the sub domain (wsn-enigmasidd), the port number

(8080) and the protocol (http). The query string consists of

three key value pairs of temperature, humidity and pressure

readings which are separated by ampersand (&). Question

mark(?) marks the beginning of the query string.

Fig. 8. Web server URL

The GSM module can communicate with the NodeJS

server through its RESTful interface. REST stands for

REpresentational State Transfer. It is web based architecture

that works on the HTTP Protocol. In a REST server, each

resource is identified by URIs. GET, POST, PUT, DELETE

are the verbs that can be used to interact with the resources. In

our scenario, we perform a GET request to the Web Server at

the above-mentioned URL and pass the query string along

with it. If the values were successfully updated, we get an OK

response from the server with an HTTP status code of 200.

Once the web server, figure 9, receives a GET request

to update the sensor values the values are sent to InitialState’s

designated dashboard by using its NodeJS API. To create a

dashboard, first a bucket (A container of sensors) is created,

and then the user can pass sensor readings as key value pairs.

For instance, bucket.push (key, value).

There are a couple of services that are available to

handle and visualize IoT data, however, InitialState was

chosen for a variety of reasons. It allows dynamic data

streaming from sensors which means that there was no need to

define data sources. Moreover, this is particularly beneficial in

scaling the system to accommodate more sensors. It not only

allows visualizing data in real-time, but also allows to store

that data forever. The user can view historical data by

adjusting the timeline. Additionally, the intuitive visualization

tiles are configurable and resizable. Finally, it allows

embedding the dashboard into one’s webpage and allows to

set triggers that can notify the users through SMS. A point to

be noted here is that a few of these features are only available

with their pro subscription model. More information on

pricing tiers and features can be found in the InitialState

webpage, [10].

Fig. 9. Web User Interface

Furthermore, the server checks the incoming weather

sensor values for conditions of disease and triggers a

notification via email and SMS to alert the farmers about the

disease onset. The background of the webpage is also

modified to indicate the onset of the disease. A condition of

temperature > 20° C, pressure > 101500 Pa, humidity > 60%

was used for demonstration purpose (A condition that can be

created in a room). However, the trigger can easily be

modified for a real-world scenario if the system is to be

deployed in a field. Further, different triggers can be set for

different diseases since each disease may have its own specific

weather conditions. To send an email notification, the web

server uses Nodemailer v2.7.8 module. Nodemailer is a

package that allows to send e-mails from Node.js. We use a

Gmail account that is configured to allow less secure apps to

send emails on users’ behalf. Figure 10 is a screenshot of the

customized email notification sent to the farmers.

Fig. 10. Notification via email

Fig. 11. Notification via SMS

An Android application was developed to adapt and

display the webpage with regards to the mobile device layout,

Figure 11. The application was coded in Java using the

Android Software Development Kit (SDK) in the Android

Studio IDE v2.2.2. The application adapts to any screen size

and can be installed on any Android device. The application

allows the same interaction and features that were available

with the web UI.

Fig. 12. Android Application

V. CONCLUSION AND FUTURE WORK

In this document, a GSM based data logger with sensor
Bluetooth network was presented along with cloud web server
and an Android application. Battery consumption needs are
yet to be explored since the Arduino boards were powered
using a USB interface. Additionally, the number of sensors
needs may be increased, and the number of Bluetooth nodes
may be expanded. Scalability and diagnostic tools need to be
added into the system to allow the user to add, remove, and
test eventual nodes on the network.

REFERENCES

[1] Pavan, W., C.W. Fraisse, N.A. Peres. 2011. Development of a web-

based disease forecasting system for strawberries. Computers and
Electronics in Agriculture 75(1):169-175.

[2] D. F. G. Junco, D. F. Díaz Caro, M. S. C. Forero and I. A. R. Ruge,
"Agrometeorological monitoring station based microcontroller and
bluetooth communication," 2015 IEEE 2nd Colombian Conference on
Automatic Control (CCAC), Manizales, 2015, pp. 1-

[3] M. F. Hunar et al., "GSM wireless datalogger of small hydro power
generation system," 2014 4th International Conference on Engineering
Technology and Technopreneuship (ICE2T), Kuala Lumpur, 2014, pp.
246-251.

[4] S. Rosiek, F.J. Batlles, A microcontroller-based data-acquisition system
for meteorological station monitoring, Energy Conversion and
Management, Volume 49, Issue 12, December 2008, Pages 3746-3754

[5] R. V. Sharan ‘Development of a Remote Automatic Weather Station
with a PC-based Data Logger’ by

[6] Arduino Board <https://www.arduino.cc/en/Main/ArduinoBoardUno>
accessed in November 12th, 2016

[7] GPRSShield<https://www.seeedstudio.com/GPRS-Shield-V3.0-p-
2333.html> accessed in November 12th, 2016

[8] Bluetooth<https://www.amazon.com/Bluetooth-converter-serial-
communication-master/dp/B008AVPE6Q> accessed in November 12th,
2016

[9] Sparkfun weather shield

<https://www.sparkfun.com/products/12081>

[10] Initial state pricing tiers and features

<http://support.initialstate.com/knowledgebase/articles/747096-pricing-
tiers> accessed in December 3rd, 2016

https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.seeedstudio.com/GPRS-Shield-V3.0-p-2333.html
https://www.seeedstudio.com/GPRS-Shield-V3.0-p-2333.html
https://www.amazon.com/Bluetooth-converter-serial-communication-master/dp/B008AVPE6Q
https://www.amazon.com/Bluetooth-converter-serial-communication-master/dp/B008AVPE6Q
https://www.sparkfun.com/products/12081
http://support.initialstate.com/knowledgebase/articles/747096-pricing-tiers
http://support.initialstate.com/knowledgebase/articles/747096-pricing-tiers

